

SnapAV Binary MoIP Controller Integration Protocol Document
Integration Protocol v1.9 rev20210603

Firmware 3.0.4.8

Overview

 This integration protocol details how a third-party system can be used to control a SnapAV
Binary MoIP Controller. With the controller online, the integration protocol will be listening for
connections on port 23 at the controllers IP address. NOTE: 10 simultaneous connections can be made
at a time. To get started, netcat or similar software can be used to initiate a connection and test any of
the following protocol commands below.

Specification

 THIRD-PARTY SYSTEM <---> SnapAV Binary MoIP Controller
 i.e. MoIP IP: 192.168.0.20 Port: 23

Integration

 Message Structure
Command and response messages are standard ASCII text.
? – Request message
! – Control message
- Error message
~ - Unsolicited message
\n – End of command message, ASCII hex: 0x0A dec: 11

Protocol

 Protocol Command Description/Response
?Firmware\n Request Firmware Version.

Response: ?Firmware=1.0.0.0\n

?Receivers\n Request all Receivers current inputs.

Response: ?Receivers=1:3\n
Where 1 is the TX and 3 is the RX. This will be comma delimited for multiple
devices.

?Devices\n Request TX and RX count.

Response: ?Devices=1,4\n
Where 1 is the TX count and 4 is the RX count.

?Name=T\n

Where T is 0/1

Request the names for either TX or RX. To request all the TX names, use 1 for the
payload. To request all the RX names, use 0 for the payload. The response will be
new line delimited for multiple devices where each lines format is as follows:
?Name=MODE,INDEX,NAME.

Request for TX: ?Name=1\n
Response for TX: ?Name=1,1,TX-D46A9121000B\n

Request for RX: ?Name=0\n
Response for RX: ?Name=0,1,RX-D46A91210620\n
?Name=0,2,Basement TV\n
?Name=0,3,Living Room TV\n
?Name=0,4,RX-D46A91210604\n

?Scenes\n Request the scene names from the MoIP Controller app. The app must be
enabled in order for this api to work. The response will be a list of scene names
wrapped in brackets and delimited by commas.

Request: ?Scenes\n
Response: ?Scenes={Game Day},{Movie Night}\n

!Switch=TX,RX\n

Where TX is the index of the
Transmitter you want to switch
and RX is the index of the
Receiver you want the switch to
happen on.

Switches the input on a Receiver to the desired Transmitter. Denoting TX as 0
will request the receiver to disconnect it’s source.

Request to switch to Transmitter 1 on Receiver 2: !Switch=1,2\n
Success Response: OK\n
Error Response: #Error

Request to disconnect source on Receiver 2: !Switch=0,2\n
Success Response: OK\n
Error Response: #Error

!Resolution=RX,R\n

Where RX is the Receiver you’d
like to change the resolution of
and R is one of the following:
 0 = Pass through resolution from
the source.
 1 = 1080p 60Hz
 2 = 1080p 50Hz
 3 = 2160p 30Hz
 4 = 2160p 25Hz

Changes the resolution on a given Receiver.

Request to switch Receiver 1’s resolution to Pass-Through: !Resolution=1,0\n
Success Response: OK\n
Error Response: #Error

!OSD=RX,MSG\n

Where RX is the Receiver index
you’d like to display MSG on.
MSG must be plain ASCII Text.

Displays a plain text message on the display of the given Receiver.

Request to display “Hello World” on Receiver 1: !OSD=1,Hello World\n
Success Response: OK\n
Error Response: #Error

NOTE: To clear the text, send !OSD=1,CLEAR\n

!SetOSDImage=URL,REFRESHRAT
E,[RX],POS\n

Displays a url’s source image on one or many Receivers at the position defined
and is refreshed at the rate in seconds provided. Receivers is an comma
delimited list of ids wrapped in []. For example, [1,2,3] would be Receivers ID 1,
2, and 3.

Where URL is the image source,
REFRESHRATE is the time in
seconds to wait to refresh the
image, RX is an array of Receiver
indexes, and POS is the position
on the Receiver to put the source
image.

Request to display myImage.jpg on Receiver 1,2, and 3 in the top right position
and refresh it every 5 seconds:
!SetOSDImage=www.images.com/myImage.jpg,5,[1,2,3],3\n
Success Response: OK\n
Error Response: #Error

POSITION ENUMERATIONS
3 = TOP RIGHT
7 = BOTTOM LEFT
9 = BOTTOM RIGHT

!SetOSDSource=TX,[RX],POS\n

Where TX is the Transmitter ID,
RX is an array of Receiver
indexes, and POS is the position
on the Receiver to put the source
image.

Displays a Transmitters source image on one or many Receivers at the position
defined. Receivers is an comma delimited list of ids wrapped in []. For example,
[1,2,3] would be Receivers ID 1, 2, and 3.

Request to display Transmitter 1’s source image on Receiver 1,2, and 3 in the top
right position: !SetOSDSource=1,[1,2,3],3\n
Success Response: OK\n
Error Response: #Error

POSITION ENUMERATIONS
3 = TOP RIGHT
7 = BOTTOM LEFT
9 = BOTTOM RIGHT

!StopOSD=[RX]\n

Where RX is an array of Receiver
indexes.

Removes the source image on one or many Receivers.

Request to remove OSD picture on Receivers 1,2 and 3: !StopOSD=[1,2,3]\n
Success Response: OK\n
Error Response: #Errror

!Reboot\n Request to reboot the MoIP controller.

Reboot Controller Request: !Reboot\n
Success Response: OK\n
Error Response: #Error+

!Exit\n Request to Exit the session on the MoIP controller.

Exit Session Request: !Exit\n
Success Response: Bye\n
Error Response: #Error

!CEC=RX,MODE\n

Where RX is the Receiver index
you’d like to control CEC on and
MODE is one of the following:

 0 = CEC OFF
 1 = CEC ON

Controls CEC for a given Receiver. MODE must either be 0 for OFF or 1 for ON.

Request CEC Off on Receiver 1: !CEC=1,0\n
Success Response: OK\n
Error Response: #Error

!Serial=TYPE,INDEX,BAUD,DATABI
TS,PARITY,STOPBITS,DATA\n

 type: 0 = output (RX), 1 = input
(TX)

index: device to send
baud: integer baudrate
data bits: 5, 6, 7, 8
parity: n = none, e = even, o =
odd
stop bits: 1, 2

data: hex data to send

Sends serial data to RX or TX serial port.

Send to TX 2 at 9600-8n1 the characters "abc": !Serial=1,2,9600-8n1,61 62 63
Success Response: OK\n
Error Response: #Error\n

!IR=TYPE,INDEX,PRONTOCODE\n

type: 0 = output (RX), 1 = input
(TX)
index: device to send
prontocode: Pronto Hex format
string

Sends IR data to RX or TX IR Flasher.

Send to TX 4 the pronto code 0000 006a 0022 0002 0160 00b2 0015 0017 0015
0017 0015 0043 0015 0017 0015 0017 0015 0017 0014 0018 0015 0017 0015
0043 0015 0043 0015 0017 0015 0043 0015 0043 0015 0043 0015 0043 0015
0043 0015 0017 0015 0017 0015 0017 0015 0043 0015 0017 0015 0017 0015
0017 0015 0017 0015 0043 0015 0043 0015 0043 0015 0017 0015 0044 0014
0044 0014 0044 0014 0044 0014 061d 015f 005a 0015 0eb5:
!IR=1,4, 0000 006a 0022 0002 0160 00b2 0015 0017 0015 0017 0015 0043 0015
0017 0015 0017 0015 0017 0014 0018 0015 0017 0015 0043 0015 0043 0015
0017 0015 0043 0015 0043 0015 0043 0015 0043 0015 0043 0015 0017 0015
0017 0015 0017 0015 0043 0015 0017 0015 0017 0015 0017 0015 0017 0015
0043 0015 0043 0015 0043 0015 0017 0015 0044 0014 0044 0014 0044 0014
0044 0014 061d 015f 005a 0015 0eb5
Success Response: OK\n
Error Response: #Error\n

!SetAudioVolumelevel=RX,LEVEL\
n
Where RX is the Receiver index of
an audio only device and LEVEL is
the volume level you’d like to set.

 LEVEL: 0-100 value

Sets the audio volume level on a given audio only receiver.

Request Volume Level 50 on Audio Receiver 1: !SetAudioVolumelevel=1,50\n
Success Response: OK\n
Error Response: #Error

?AudioVolumeLevel=RX\n
Where RX is the Receiver index of
an audio only device.

Gets the audio volume level on a given audio only receiver.

Request Volume Level for Audio Receiver 1: ?AudioVolumelevel=1\n
Success Response: ?AudioVolumeLevel=1,50\n
Error Response: #Error

!HDMIAudioMute=RX,MUTE\n

Where RX is the Receiver index of

Sets the HDMI Audio Mute on a given receiver.

Request hdmi audio mute on receiver 2: !HDMIAudioMute=2,1\n
Success Response: OK\n

a device and MUTE is 1 for mute
or 0 for unmute

Error Response: #Error

?HDMIAudioMute=RX\n

Where RX is the Receiver index of
a device.

Gets the HDMI Audio Mute on a given receiver.

Request mute status for Receiver 2: ?HDMIAudioMute=2\n
Success Response: ?HDMIAudioMute=2,1
Error Response: #Error

!ActivateScene=NAME\n

NAME = Name of the scene

Activates a scene with the name provided. The scene will recall all Receivers
back to the paired Transmitters. This scene is generated the moment the scene
is created in the app.

Request to activate scene “Good Night”: !ActivateScene=Good Night\n
Response: OK\n

~Serial=TYPE,INDEX,DATA\n

TYPE: 0 = output (RX), 1 = input
(TX)
 INDEX: device to send
 DATA: hex data received

Unsolicited serial data to the connected client. This data will be sent over the
protocol without a request. The third-party system should always be handling
these incoming messages.

TX #2 sent characters "abc": ~Serial=1,2,61 62 63

~Receivers=TX,RX\n

Where TX is the currently
selected Transmitter index and
RX is the Receiver index.

Broadcasts all Receivers current inputs.

Response: ~Receivers=1:3\n
Where 1 is the TX and 3 is the RX. This will be comma delimited for multiple
devices.

~AudioVolumeLevels=LEVEL1,LEV
EL2\n

Where LEVEL is the current
volume level of the audio only
receiver at that index.

Broadcasts all Receivers current audio volume levels.

Response: ~AudioVolumeLevels=0,10,50\n
Where 0 is the current volume level of receiver 1, 10 for receiver 2, and 50 for
receiver 3.

#Error\n Sent whenever an invalid command was received or an internal device error has
occurred.

Consider this example with only 2 connected Transmitters and 5 connected
Receivers:

Request to switch Transmitter 2 to Receiver 6: !Switch=2,6\n
Response: #Error

Receiver 6 does not exist, therefore an error is returned.

Example:

